地址:北京市海淀區(qū)中關(guān)村北大街100號(北樓)北京大學(xué)建筑與景觀設(shè)計學(xué)院一層 Email:info@landscape.cn
Copyright ? 2013-2022 景觀中國(www.cncwe.org)版權(quán)所有 京ICP備05068035號 京公海網(wǎng)安備 110108000058號
上圖拍攝于江西省上饒市婺源縣大鄣山山腳,山間小溪被水泥堤壩所困,兩岸濕地消失殆盡,水面上漂浮著各種除草劑和化肥的塑料包裝。此時,雨季剛剛過去,來自山林的溪水僅在穿越了不足兩千畝的農(nóng)田后,就遭受到農(nóng)藥和化肥的嚴重污染,大量水生生物也已絕跡。最終,這條溪水將匯入長江。右圖拍攝于渤海灣的海濱沙灘,這里承載著來自陸地的面源污染,導(dǎo)致水體嚴重富營養(yǎng)化。這片曾經(jīng)豐饒的海灣,而今已被判定為生態(tài)學(xué)意義上的“死?!?。我們的水生態(tài)系統(tǒng)早已病入膏肓!
俞孔堅
北京大學(xué)建筑與景觀設(shè)計學(xué)院教授;
美國藝術(shù)與科學(xué)院院士
原文刊發(fā)時間:2021年8月
剛剛過去的7月,除了持續(xù)變異升級的新冠肺炎(COVID-19)疫情威脅著世界各地的人民以外,洪澇肆虐的報道亦成為各國媒體的頭版頭條。從7月12日到7月底,在德國、比利時、荷蘭等歐洲最富裕的地區(qū)發(fā)生的發(fā)洪澇災(zāi)害已吞噬228條生命,其中有184人喪生于素有“工程師故鄉(xiāng)”之譽的德國,而這也是德國自1962年北海洪水以來最慘烈的一次自然災(zāi)害[1];7月20日,中國鄭州的特大暴雨事件中,截至8月2日12時已致292人遇難[2]。這些洪澇災(zāi)害幾乎都發(fā)生在經(jīng)濟發(fā)達的國家和地區(qū)—這或許就是我們常常將自然災(zāi)害與人類文明相提并論的原因。在遭受災(zāi)害的城市中,包括地鐵、公交在內(nèi)的交通系統(tǒng),手機、寬帶等通訊系統(tǒng),以及水電系統(tǒng)等人類文明的象征一度癱瘓,城市脆弱性暴露無遺。此外,在許多城市公園完好無損、許多內(nèi)部河道也并未出現(xiàn)過大洪水的同時,一些與人民生命安全密切相關(guān)的服務(wù)設(shè)施卻面臨著巨大風(fēng)險,如鄭州阜外醫(yī)院恰恰處在城區(qū)最低洼地帶[3]。
反思之聲在業(yè)界和外界哄然而起。筆者以為最應(yīng)反思的是現(xiàn)代城市缺乏應(yīng)對不確定的自然“災(zāi)害”的韌性,這反映了整體水生態(tài)系統(tǒng)的病態(tài)。對于韌性較高的城市而言,這些“事件”并不足以構(gòu)成洪澇災(zāi)害。殊不知,正是人類引以為豪的鋼筋水泥所構(gòu)筑的、堅不可摧的灰色基礎(chǔ)設(shè)施(如堤壩和大型水庫等復(fù)雜的工程設(shè)施),將自然過程轉(zhuǎn)變?yōu)榱恕盀?zāi)害”。其實,與水相關(guān)的災(zāi)害何止洪澇,工業(yè)化、城鎮(zhèn)化,以及全球氣候變化正使世界范圍內(nèi)(尤其是在中國)的人水關(guān)系矛盾日益尖銳,水和以水為主導(dǎo)因子的生態(tài)系統(tǒng)的安全和健康問題已經(jīng)威脅到人類及我們賴以生存的環(huán)境的可持續(xù)性!
地球上的任何生態(tài)系統(tǒng)都離不開水,因此,我們很難脫離地球科學(xué)和地理學(xué)來探討水的健康。但水又不得不受到特別關(guān)注,人們一開始就試圖探討水的分布、運動和管理,從而發(fā)展出了水文學(xué);后來,人們發(fā)現(xiàn)水與生物具有密切關(guān)系,并構(gòu)成了相互作用的系統(tǒng),即水生態(tài)系統(tǒng),因而發(fā)展出了生態(tài)水文學(xué);接著,發(fā)現(xiàn)水和人類也是相互作用的系統(tǒng),于是又發(fā)展出了社會水文學(xué);再后來,干脆將研究與水相關(guān)的科學(xué)全部統(tǒng)一稱為水科學(xué)。然而,上述這些關(guān)于水的學(xué)科似乎仍無法涵蓋筆者關(guān)心的問題,即探討系統(tǒng)性的水/完全的水[4];既是地理學(xué)和水文學(xué)意義上的水,也是孕育生命的水。她是多尺度的空間存在,從生境和場地,到城市和區(qū)域,再到國土和全球;同時,水與大地、城市、鄉(xiāng)村、動植物和人類及其活動相互作用,構(gòu)成了水生態(tài)系統(tǒng)。她既表現(xiàn)為水與其他景觀元素或水生態(tài)系統(tǒng)與其他生態(tài)系統(tǒng)之間的空間格局與過程的關(guān)系,也表現(xiàn)為水生態(tài)系統(tǒng)的內(nèi)部結(jié)構(gòu)和功能的關(guān)系,其中包括物質(zhì)流、物種流、能流和信息流。在任何尺度上,人的因素都是不可或缺的,甚至是占主導(dǎo)地位的。
因此,我們需要從生態(tài)系統(tǒng)服務(wù)的視角來理解、保護和修復(fù)水生態(tài)系統(tǒng)/水系統(tǒng),并評價其健康狀態(tài),具體包括:支持服務(wù),即提供棲息地,支持生物傳播、繁衍和遷徙等生命承載能力;供給服務(wù),即提供水及水產(chǎn);調(diào)節(jié)服務(wù),即應(yīng)對洪澇和干旱等環(huán)境變化的生態(tài)韌性;以及文化服務(wù),即提供審美啟智、文化認同、歸屬感和休憩等服務(wù)。一個病態(tài)的水生態(tài)系統(tǒng),不但不能給予人類良好的生態(tài)系統(tǒng)服務(wù),反而會危害人類的健康甚或生存。
而要維護健康的水生態(tài)系統(tǒng),最根本的措施是給水以自由。只要考察一下歷史上最嚴重的洪水災(zāi)害,就會發(fā)現(xiàn)最威脅生命財產(chǎn)安全的往往都是決堤。典型例子包括:1962年德國的北海洪水事件即是洪水沖垮堤壩所致;1975年8月8日的河南駐馬店特大暴雨,堪稱世界最慘洪災(zāi),死亡人數(shù)以萬計,也是由板橋水庫、石漫灘水庫等一系列水庫連環(huán)決堤造成的[5];中國歷史上有記載的、造成巨大生命財產(chǎn)損失的黃河洪災(zāi),也都是決堤帶來的;即使是1960年建成的意大利的瓦依昂大壩,算得上是當(dāng)時世界上最堅固、最高的大壩,也在1963年10月9日的深夜,遭遇了嚴重的岸坡下滑,幾乎掀翻了整個水庫,近兩千人在睡夢中喪命。所謂的“壓迫越深重,反抗也將越猛烈”,不僅適用于人類社會的關(guān)系,也適用于人與水的關(guān)系。要與水謀安全、謀和諧,首要之策便是適應(yīng)和規(guī)避水的不可抗力—道理很簡單,水需要足夠的空間。雖然人類文明在一定程度上意味著從必然王國走向自由王國,即人類通過對自然的控制而獲得自身的自由;相反,若人類剝奪了自然的自由,也必將遭受自然的反抗。這并非在否定人類文明的成果,而是強調(diào)在應(yīng)對不確定的自然過程時,任何對抗自然力的灰色人工技術(shù)和設(shè)施,無論它們多么堅固和復(fù)雜,最終都會因其韌性的局限而加劇自然的破壞性。
那么,水到底需要多大的自由空間?以中國為例,在宏觀的國土尺度上,早在2006年,北京大學(xué)研究團隊便探討了國土尺度水源涵養(yǎng)安全格局,并發(fā)現(xiàn)只要保護和恢復(fù)占國土面積43.6%的山脈體系,國土尺度上的水源涵養(yǎng)便會達到良好狀態(tài),對于一個山地和丘陵占了近70%的國家來說,這似乎是可以實現(xiàn)的。而通過洪水調(diào)蓄安全格局的分析發(fā)現(xiàn),在季風(fēng)氣候的條件下,每年的洪水淹沒區(qū)域大約在國土面積的0.8%~2.2%之間。[6]因此,一個聽起來浪漫的假設(shè)是:將這些洪澇頻發(fā)的土地歸還于水,困擾中國幾千年的人水矛盾便會得到徹底解決。
然而,這些適合作為生態(tài)蓄洪區(qū)的國土,也正是河漫灘上最為肥沃的土地,它們占全國耕地面積的6%~15%左右[7]。歸還河漫灘在幾十年前都是不可接受的,因為在當(dāng)時,保護一畝三分地,就是保護一家人的生存機會。但在今天,這不再是個奢侈的假設(shè)。僅從經(jīng)濟角度來講,如今的中國,農(nóng)業(yè)產(chǎn)值僅占全國GDP的8%,事實上,大量土地撂荒已成為廣大農(nóng)村的普遍現(xiàn)象。間隙性淹沒可以滋潤河漫灘與洪泛區(qū)因被用作農(nóng)田而日漸貧瘠的土地,并修復(fù)其所在的水生態(tài)系統(tǒng)。與動輒以億元計的灰色防洪工程投資相比,哪一個更具經(jīng)濟性已不辯自明。更重要的是,通過釋放水域空間,數(shù)千年來被破壞的國土水生態(tài)系統(tǒng)將會逐漸修復(fù)。有人會問:淹沒區(qū)的數(shù)千萬人口如何安置?宏觀層面的城鎮(zhèn)化發(fā)展機遇、中觀層面的生態(tài)優(yōu)先的新城鎮(zhèn)選址和規(guī)劃、微觀層面的高臺避洪策略,以及與水共生的生態(tài)智慧和健全的洪澇災(zāi)害防控體系的建立,都將為此戰(zhàn)略的可行性做出貢獻。然而,當(dāng)前泛濫全球的、粗暴的大型水工設(shè)施,包括攔河大壩、防洪高堤、大型水庫、長距離跨流域調(diào)水、侵占水域,以及低洼地的造城行為等,正在為保障國土和區(qū)域的水生態(tài)系統(tǒng)健康帶來巨大壓力。
在中觀的城鎮(zhèn)和鄉(xiāng)村尺度上,一個健康的水生態(tài)系統(tǒng)體現(xiàn)在如何使水在建成區(qū)內(nèi)擁有足夠的自由空間,以及如何尋找合適的地方就地滯蓄,自然積存、自然凈化、自然滲透并補充地下水,以保持地下水平衡,并保證濕地與溪流擁有足夠的水來滋養(yǎng)與其共生的生物群落。鑒于缺水乃是中國、也是世界范圍的人水矛盾的關(guān)鍵,建設(shè)并維護像海綿一樣具備韌性、能適應(yīng)極端暴雨事件的水生態(tài)基礎(chǔ)設(shè)施,是人工干預(yù)下的城鄉(xiāng)水生態(tài)系統(tǒng)達到健康狀態(tài)的標志—而這也正是海綿城市的出發(fā)點。關(guān)于這方面的智慧,世界上的許多古老文明都為我們留下了豐厚的遺產(chǎn),包括在高山上建造梯田以涵養(yǎng)水源,在平原上挖掘坑塘以調(diào)節(jié)旱澇,在河漫灘和三角洲營造?;~塘以利棲居和生產(chǎn),在沼澤水域上堆土成垛、營建水上田園,在城市和鄉(xiāng)村聚落中修建水塘溝瀆,以適旱澇之變。從黃泛平原兩千多年的水城關(guān)系來看,城市中足夠的“海綿體”(如水塘濕地)是保障城市韌性的水生態(tài)基礎(chǔ)設(shè)施[8][9]。當(dāng)前,為了治理城市洪澇災(zāi)害而利用灰色管道構(gòu)建的集中式排水系統(tǒng)和鋼筋水泥式的深隧工程等設(shè)施會導(dǎo)致城市水生態(tài)系統(tǒng)問題的進一步惡化—這些都將在未來被證明是無效的,甚至是飲鴆止渴的。對這樣的灰色基礎(chǔ)設(shè)施的過度依賴,無疑會導(dǎo)致人民的生命財產(chǎn)安全隨全球氣候的變化和不確定性的增加而面臨巨大風(fēng)險。
在微觀的水體、濕地等水生生境尺度上,一個健康的水生態(tài)系統(tǒng)體現(xiàn)在生物與水之間的良好生態(tài)關(guān)系上。生物離不開水,同樣沒有生物的水也是死水!植物的吸收和蒸騰作用讓水分得到循環(huán);植物的生長和死亡能凈化和豐富水體中的養(yǎng)分;以水為媒,物種得以繁衍和遷徙擴散。濕地之群落、水岸之形態(tài),溪流之水堨、深潭淺灘之變化等,都是一個健康的水生態(tài)系統(tǒng)中舉足輕重的元素。
基于上述認識,維護安全與健康的自然和人類水生態(tài)系統(tǒng),離不開三大關(guān)鍵策略:1)保障水源涵養(yǎng)和洪水調(diào)蓄安全格局,給水自由的空間,通過水安全格局的規(guī)劃,劃定人-水交集邊界,奠定人水和諧共生的空間格局;2)提高水生態(tài)系統(tǒng)韌性,即構(gòu)建海綿國土—包括海綿城市、海綿田園等—來實現(xiàn)城水相融,而核心就是源頭就地滯蓄、過程減速消能、末端彈性適應(yīng);3)修復(fù)水生環(huán)境與生境,去工業(yè)化、變灰為綠、削減人工合成化學(xué)物質(zhì)的危害;重建水與田園、人與其他生物的和諧共生關(guān)系,使水生態(tài)系統(tǒng)藍綠交織、清新明亮。
這三大策略都是基于自然的途徑,但這并不是提倡回到傳統(tǒng)農(nóng)業(yè)時代或漁獵時代,而是希望在批判吸收以往文明成果的基礎(chǔ)上,創(chuàng)造新的、生態(tài)的文明,唯有如此,水生態(tài)系統(tǒng)與國土生態(tài)系統(tǒng)才能健康、美麗,從而滋養(yǎng)出一個健康、繁榮的社會,即所謂“生態(tài)興,則文明興”。
YU Kongjian
Professor of College of Architecture and Landscape, Peking University;
Member of the American Academy of Arts and Sciences
Published in August 2021
In addition to the COVID-19 virus variants that keep threatening people all over the world, raging floods made headlines across the globe in July. From July 12 to the end of the month, floods in most affluent European countries, such as Germany, Belgium, and the Netherlands, killed 228 lives—Germany, “the hometown of engineers,” suffered from the worst natural disaster in the country since the North Sea Flood of 1962, causing 184 deaths[1]. On July 20, 292 people died (by noon on August 2) in a cruel storm in Zhengzhou, China[2]. These floods mostly took place in developed countries or regions—Maybe this implies the relation between natural disasters and human civilization. In the disaster-stricken cities, symbols of civilization—transportation systems, communication systems, as well as water-power systems—all paralyzed overnight. While many urban parks were little damaged and no severe floods were seen in the rivers inside the parks, the city’s daily service facilities have to faced huge risks. For instance, Zhengzhou Fuwai Hospital is located in the lowest part of the city[3].
Wide debates on the urban infrastructure construction arose since the 7·20 Zhengzhou Storm. In the eyes of the author, the most sticking problem is that modern cities often lack resilience to the uncertainty of natural disasters. In other words, on the whole, our aquatic ecosystems are sick. For cities with greater resilience, such storms would not lead to so much loss. However, it is the indestructible gray infrastructures—including the complex engineering facilities such as dams and large reservoirs—built with concrete and steel that turn these natural processes into “disasters.” In fact, besides floods, water disasters are increasingly frequent along with industrialization, urbanization, and global climate change, exacerbating the conflicts between human and water around the world, especially in China. The safety and health of the water and aquatic ecosystems has profound impacts on the sustainability of mankind and our living environment!
Water is essential to all ecosystems on the earth. The study of water health is difficult in isolation from Earth Sciences and Geography, but it still requires special attention. We exploring the distribution, mobility, and management of water, Hydrology emerged; We discovering the affecting patterns of water on organisms and the causality on aquatic ecosystem, Ecohydrology was proposed; We studying the coupled human-water system, Sociohydrology came into being. Later, disciplines that study water are viewed as Water Science. However, research in these disciplines still have not explored the water as a holistic system oriented subject[4], which is not only in the geographic and hydrologic sense, but also about the essence of life; which exists across spatial scales: habitats and sites, cities and regions, countries and the globe. Water interacts with land, cities, villages, animals, plants, humans and their activities, as the aquatic ecosystem, which covers not only the relationship of spatial patterns and processes between water and other landscape elements or water ecosystem and other ecosystems, but also the structures and functions within the ecosystem, including the interactions between the flows of materials, species, energy, and information. Human is indispensable, or even crucial to aquatic ecosystems at all scales.
Therefore, we need to evaluate, protect, and restore aquatic ecosystems/water systems based on the understanding of ecosystem services. The aquatic ecosystems provide supporting services, i.e. providing habitats, and supporting species spread, reproduction, and migration; provision services, i.e. providing water and aquatic products; regulating services, i.e. maintaining ecological resilience in response to environmental changes such as floods and droughts; and cultural services, i.e. fostering aesthetic tastes, cultural identity, sense of belonging, and offering recreational spaces. Unhealthy aquatic ecosystem cannot provide sound ecosystem services for humans, or worse, endanger human health or survival.
Maintaining the natural flow is critical to the health of aquatic ecosystem. In history, most damaging floods were caused by dyke bursting. Examples include the North Sea Flood in Germany in 1962 and the heavy flood in Zhumadian, China on August 8, 1975. The latter was one of the most disastrous in history, leading to tens of thousands of deaths, and also caused by serial bursting of the Banqiao Reservoir, the Shimantan Reservoir, and others[5]. Recorded floods that took place along the Yellow River and caused huge loss of life and property also resulted from dyke bursting. The Vyion Dam in Italy built in 1960 was seen as the solidest and highest dam in the world of the time. On the evening of October 9, 1963, a sudden landslide shattered the entire reservoir, and nearly two thousand people died overnight—As the saying goes, “the harder the oppression, the more violent the resistance will be.” This is also true to the relationship between man and water. To harmonize with water, it is necessary to allow sufficient space for the natural flow. Although human beings are gaining greater freedom through the control over nature, but are more terribly retaliated by the nature at the same time. I’m not denying the achievements in human history, but pointing out that gray artificial techniques and facilities which go against nature would exacerbate the destructive force of nature due to the inadequate resilience.
Then, how large the space do we need for the natural flow of water? Take China as an example. In 2006, the research team from Peking University explored the security pattern of water conservation at the national scale, and found that as long as protecting and restoring the mountains, accounting for 43.6% of the total territory, the water conservation at the national scale will be greatly improved. This goal is possible for China, a country where mountains and hills account for nearly 70% of its territory. An analysis of the security pattern of flood regulation and storage showed that, under the monsoon climate, the annually flooded area ranges from 0.8% to 2.2% of the territory.[6] Therefore, a romantic hypothesis would be that, after experiencing the unprecedented urbanization in history, the flood-prone land areas would be reserved for the natural flow. Then the human-water conflicts that have troubled China for thousands of years will be addressed radically.
However, this flood storage area, accounting for 0.8% to 2.2% of China’s territory[6], is the most fertile land on the floodplain (taking up a proportion of 6% to 15% of the arable land)[7]. It was unrealistic to turn arable land into flood storage area decades ago, when agriculture product contributed to most households’ income. But today it is no longer a fantasy: Agriculture product now accounts for only 8% of China’s GDP, and a considerable amount of arable land is left uncultivated in rural areas. Being impoverished due to excessive reclamation, the farmlands of floodplains and the whole farmland ecosystem could be restored by occasional inundation. Compared with the enormous investment in gray infrastructure projects for flood control, water system restoration is much more economical. More importantly, the damaged territorial aquatic ecosystem would be restored step by step as the increase of water space. The tens of millions of residents from the inundated areas can be well resettled through smart urbanization at the macro level, ecology-prioritized site selection and planning strategies for new towns at the medium level, and flood risk control measures such as building high platform at the micro level, together with the ecological wisdom of co-living with water and the building of a sound flood security system. However, large-scale hydraulic projects like barrages, levees and reservoirs, long-distance water diversion infrastructures across watersheds, waters invasions, and construction activities in low-lying areas, are endangering aquatic ecosystems.
A healthy aquatic ecosystem in cities, towns, or villages requires sufficient spaces for flood retention and storage in the built-up areas. Natural water storage, purification, and infiltration, as well as recharging of groundwater, ensures water circulation and stable water supply for wetlands and streams to nourish aquatic species. As water shortage is critical to China and other countries across the world, it necessitates the construction of resilient water ecological infrastructures to adapt to extreme rainstorms like “sponges,” thus guarantee the health of urban and rural aquatic ecosystems—This is also the goal of Sponge City construction. Many ancient civilizations left behind vast legacies in smart water management, such as developing terrace fields to conserve water, building ponds to regulate droughts and floods, creating mulberry-fish ponds in floodplains and deltas to foster local aquiculture, piling up soil on marshes to build water gardens, and digging ponds and ditches in urban and rural settlements. The history of the water-city co-existence in the Yellow River Basin tells that creating sufficient “sponges” (such as ponds and wetlands), as important water ecological infrastructures, can ensure urban resilience[8][9]. The centralized drainage systems built with gray pipelines and deep tunnels made of concrete and steel are introduced to control urban flooding. But they often prove to be ineffective and unsustainable in urban water system management. Over-dependence on such infrastructures will put people’s lives and property at huge risks due to the global climate changes and uncertainties.
At the micro-scale of hydrophytic habitats such as water bodies and wetlands, a healthy aquatic ecosystem sees dynamic interactions between organisms and water. Organisms and water are interdependent. The absorption and transpiration of plants facilitate water circulation. The growth and decay of plants clean and enrich the nutrients in the water body. Species can multiply and migrate via water. To build a healthy aquatic ecosystem, we need to pay attention to the communities in wetlands, forms of waterfronts, courses of streams, and changes in beaches.
There are three strategies on how to build safe and healthy aquatic ecosystems: 1) Ensure the security pattern of water conservation and flood regulation, allow for water’s natural flow, and define the interface between human and water through water security pattern planning to rebuild human–water harmony; 2) Enhance the resilience of aquatic ecosystems by building “Sponge Land” —including Sponge City and Sponge Countryside, increasing on-site flood storage, slowing down water flow processes, and improving the resilience of tail-end sponges; and 3) Restore aquatic and hydrophytic habitats, promote deindustrialization, minimize the use of synthetic chemicals, rebuild the harmony between water and fields, human and the nature, and enhance the integration of blue–green spaces.
These strategies are all nature-based solutions. Instead of calling for reintroducing of the lifestyles or production modes of the agricultural age or the fishing-hunting age, the author encourages building a new ecological civilization upon legacies. Only in this way could we have healthy and beautiful water systems and territorial ecosystems, for a greater societal prosperity.
參考文獻
[1] Lamb, H. H., & Frydendahl, K. (1991). Historic Storms of the North Sea, British Isles and Northwest Europe. Cambridge, England: Cambridge University Press.
[2] The People’s Government of Henan Province News Office. (2021, August 2). The death toll from floods in Henan, China rose to a heart-wrenching 302. Xinhua News. Retrieved from http://m.xinhuanet.com/ha/2021-08/02/c_1127722682.htm
[3] Ewaters Engineering Environments Shanghai Co., Ltd. (2021, July 28). Urban flood risk management based on Zhengzhou, China flood inundation model. EwatersEnvironment. Retrieved from https://mp.weixin.qq.com/s/uZxdKPLeD18J889koBm-hA
[4] Yu, K. (2014). Complete Water. In A. Mathur, & D. Da Cunha (Eds.), Design in The Terrain of Water (pp. 57-65). San Francisco Bay Area, CA: Applied Research & Design Publishing.
[5] Local Chronicles Office of Zhumadian City. (n.d.). Local Chronicles of Zhumadian City. Retrieved from http://www.zmdsqw.com/news/fzg/article/95.html
[6] Yu, K., Li, H., Li, D., Qiao, Q., & Xi, X. (2009). National scale ecological security pattern. Acta Ecologica Sinica, 29(10), 5163-5175. doi:10.3321/j.issn:1000-0933.2009.10.001
[7] Ministry of Natural Resources of the People’s Republic of China, & National Bureau of Statistics. (2016, August). Major data bulletin of the second National Land Survey. Retrieved from http://www.mnr.gov.cn/dt/zb/2017/tdbgdc/beijingziliao/201608/t20160811_2127729.html
[8] Yu, K., Zhang, L., & Li, D. (2008). Living with Water: Flood Adaptive Landscapes in the Yellow River Basin of China. Journal on Landscape Architecture, 3(2), 6-17. doi:10.1080/18626033.2008.9723400
[9] Yu, K., & Zhang, L. (2008). Preservation and development of water cities adaptive to the areas flooded by the Yellow River. Journal of Hydraulic Engineering, 39(6), 688-696. doi:10.3321/j.issn:0559-9350.2008.06.008
Source:
Yu, K. (2021). Building and Restoring a Healthy Aquatic Ecosystem. Landscape Architecture Frontiers, 9(4), 4-9. https://doi.org/10.15302/J-LAF-1-010018
翻譯 丨 田樂、肖杰
制作 丨 冉玲于
版權(quán)聲明:本文版權(quán)歸原作者所有,請勿以景觀中國編輯版本轉(zhuǎn)載。如有侵犯您的權(quán)益請及時聯(lián)系,我們將第一時間刪除。
投稿郵箱:info@landscape.cn
項目咨詢:18510568018(微信同號)