首頁(yè)  /  發(fā)現(xiàn)  /  思想  /  正文

想知道公園游客關(guān)心什么,哪種分析方法更合適?

景觀設(shè)計(jì)學(xué) 2024-03-13 來(lái)源:景觀中國(guó)網(wǎng)
原創(chuàng)
本研究嘗試開(kāi)展社交媒體文本數(shù)據(jù)分析方法的對(duì)比研究,并揭示其在公園感知研究中的優(yōu)缺點(diǎn)和適用性。
注:本文為刪減版,不可直接引用。原中英文全文刊發(fā)于《景觀設(shè)計(jì)學(xué)》(Landscape Architecture Frontiers)2023年第5期。獲取全文免費(fèi)下載鏈接請(qǐng)點(diǎn)擊https://journal.hep.com.cn/laf/EN/10.15302/J-LAF-1-020083;參考引用格式見(jiàn)文末。


導(dǎo) 讀

互聯(lián)網(wǎng)科技和媒體的蓬勃發(fā)展產(chǎn)生了大量社交媒體數(shù)據(jù),本研究嘗試開(kāi)展社交媒體文本數(shù)據(jù)分析方法的對(duì)比研究,并揭示其在公園感知研究中的優(yōu)缺點(diǎn)和適用性。研究選擇在相關(guān)領(lǐng)域廣泛應(yīng)用的詞典模型和LDA模型,以大眾點(diǎn)評(píng)網(wǎng)站上北京10座城市公園的點(diǎn)評(píng)文本為研究數(shù)據(jù),分別從單個(gè)公園和公園整體使用感知兩個(gè)層面進(jìn)行文本分析,并對(duì)比分析感知主題的分類結(jié)果。結(jié)果表明:詞典模型更有利于在公園間進(jìn)行橫向?qū)Ρ确治?;LDA模型則可以直觀顯示公園特色和游客感知偏好;綜合運(yùn)用兩種模型可優(yōu)化公園感知評(píng)估。兩種方法揭示了北京城市公園游客對(duì)公園的關(guān)注主要集中于社交活動(dòng)的需求、自然景觀帶來(lái)的視覺(jué)審美需求,以及交通設(shè)施狀況和城市公園消費(fèi)情況。本研究既可為社交媒體文本分析方法的選擇和使用提供優(yōu)化建議,又可為公園建設(shè)與管理改進(jìn)提供依據(jù)與指導(dǎo)。


關(guān)鍵詞

社會(huì)感知;文本分析;詞典;隱含狄利克雷分布(LDA);城市公園;景觀感知



社交媒體文本數(shù)據(jù)分析方法對(duì)比與適用性研究:以北京市城市公園感知為例

Comparison and Applicability Study of Analysis Methods for Social Media Text Data:

Taking Perception of Urban Parks in Beijing as an Example

尚珍宇,程可欣,簡(jiǎn)鈺清,王志芳

北京大學(xué)建筑與景觀設(shè)計(jì)學(xué)院


01  引言

隨著互聯(lián)網(wǎng)科技的高速發(fā)展,海量網(wǎng)絡(luò)媒體信息為社會(huì)感知的研究提供了數(shù)據(jù)基礎(chǔ)。這類研究早期多集中在通過(guò)簽到數(shù)據(jù)識(shí)別到訪率和動(dòng)機(jī)偏好分析,以及結(jié)合照片圖像內(nèi)容及其地理位置進(jìn)行的感知情緒分析。近年來(lái),通過(guò)文本數(shù)據(jù)挖掘進(jìn)行感知分析的研究也開(kāi)始起步并日漸增多。通過(guò)文本數(shù)據(jù)進(jìn)行公園感知研究正逐漸受到學(xué)者們的關(guān)注。目前已經(jīng)可以通過(guò)建立文本分析模型來(lái)挖掘文本所呈現(xiàn)的內(nèi)在規(guī)律及主題,主題模型的運(yùn)用開(kāi)始成為感知分析和滿意度評(píng)價(jià)的基礎(chǔ)。已有研究在感知分析時(shí),通常單獨(dú)采用其中一種模型進(jìn)行文本數(shù)據(jù)處理,鮮少探討不同模型之間的優(yōu)劣及專業(yè)適用性。

本研究嘗試開(kāi)展社交媒體文本數(shù)據(jù)分析方法的對(duì)比研究,并揭示其在公園感知研究中的適用性。由于基于詞典規(guī)則的分類分析模型(下文簡(jiǎn)稱“詞典模型”)和LDA模型在風(fēng)景名勝區(qū)和城市公園感知研究中應(yīng)用廣泛,本研究針對(duì)二者展開(kāi)對(duì)比分析。本研究聚焦于以下問(wèn)題:在對(duì)基于公園感知的社交媒體文本進(jìn)行分析時(shí),詞典模型和LDA模型的感知研究過(guò)程與分析結(jié)果存在怎樣的差異??jī)煞N模型的優(yōu)劣是什么?此基礎(chǔ)上,研究團(tuán)隊(duì)進(jìn)一步探究如何利用兩種模型的優(yōu)勢(shì)為城市公園規(guī)劃提供指導(dǎo),并總結(jié)文本分析方法在公園感知研究中的適用價(jià)值。


02  數(shù)據(jù)處理與研究方法

研究區(qū)域概況與數(shù)據(jù)來(lái)源

北京市市域擁有各類公園1050個(gè),公園綠地面積累計(jì)達(dá)357.2km2。本研究選擇大眾點(diǎn)評(píng)網(wǎng)作為文本數(shù)據(jù)來(lái)源,使用Python軟件中的Request模塊獲取北京市公園目錄下自2006年4月至2020年9月的所有文字點(diǎn)評(píng)數(shù)據(jù)和點(diǎn)評(píng)者信息,選取點(diǎn)評(píng)數(shù)量排名前10位的城市公園作為研究對(duì)象(表1)。

圖片

為保證模型分析的準(zhǔn)確性,研究對(duì)數(shù)據(jù)進(jìn)行了預(yù)處理,僅保留字符數(shù)大于50的文本數(shù)據(jù)。篩選后評(píng)價(jià)數(shù)量最少的公園為北京園博園(6531條),以此為標(biāo)準(zhǔn)使用SPSS分別對(duì)其他各個(gè)公園的評(píng)價(jià)數(shù)據(jù)進(jìn)行完全隨機(jī)抽樣,最終獲得65310條點(diǎn)評(píng)文本數(shù)據(jù)。研究選用Python語(yǔ)言工具jieba分詞對(duì)數(shù)據(jù)進(jìn)行分詞。清洗文本數(shù)據(jù)進(jìn)并進(jìn)行同義詞替換。根據(jù)實(shí)際使用情況,人工篩查及調(diào)整分詞和同義詞替換結(jié)果,還原不恰當(dāng)?shù)耐x詞替換內(nèi)容。

研究方法

基于詞典的感知主題分類模型

詞典模型采用王志芳等人于2021年提出的基于景觀服務(wù)的城市公園感知主題分類評(píng)估模型,該模型經(jīng)過(guò)詞典有效性檢驗(yàn),整體性能測(cè)試結(jié)果優(yōu)良。在本研究中,運(yùn)用Python對(duì)預(yù)處理后的數(shù)據(jù)進(jìn)行結(jié)構(gòu)化處理并提取高頻詞;之后進(jìn)行人工分類,構(gòu)建中文景觀服務(wù)感知詞典;繼而利用Word2vec和人工添加的方式擴(kuò)建詞典內(nèi)容,并劃分到不同的感知主題類別中。根據(jù)已有的文獻(xiàn)研究,共劃分出9類含義不同的公園景觀服務(wù)感知主題(表2)。

圖片

將獲取的公園感知評(píng)價(jià)文本數(shù)據(jù)與詞典進(jìn)行匹配,以此識(shí)別評(píng)價(jià)數(shù)據(jù)中的用詞,進(jìn)而提取出單條評(píng)價(jià)中所涉及的感知主題計(jì)算各類主題的感知頻率。將涉及某項(xiàng)感知主題的評(píng)論數(shù)量與總評(píng)論數(shù)量的比值作為相應(yīng)景觀服務(wù)主題在該公園的感知頻率。

基于LDA的感知主題分類模型

LDA是一種通過(guò)計(jì)算機(jī)來(lái)自動(dòng)分析文本的語(yǔ)言處理模型,能夠快速?gòu)姆墙Y(jié)構(gòu)化文本(即文檔)中提煉出主題。LDA模型可以計(jì)算“文檔-主題”和“主題-詞語(yǔ)”兩類概率分布,從而實(shí)現(xiàn)對(duì)文檔主題和對(duì)應(yīng)詞語(yǔ)(關(guān)鍵詞)的分類。

本研究使用Python軟件的gensim工具包調(diào)用LDA模型,實(shí)現(xiàn)文本數(shù)據(jù)主題分析。本研究中的主題數(shù)量主要通過(guò)計(jì)算主題一致性得分來(lái)確定,最后結(jié)合人工對(duì)一致性得分較高的主題進(jìn)行篩選,確定合適的主題數(shù)量以獲得理想的模型運(yùn)算結(jié)果。獲得結(jié)果后,對(duì)于每個(gè)主題的實(shí)際權(quán)重進(jìn)行計(jì)算。針對(duì)每個(gè)公園的結(jié)果,分別進(jìn)行主題命名,同時(shí)去除權(quán)重較低且感知內(nèi)容相關(guān)性較弱的主題,即“噪聲”主題。

主題分布相關(guān)性分析

對(duì)兩種模型得到的不同感知主題的分布進(jìn)行相關(guān)性分析。不同感知主題在每條評(píng)價(jià)文本中的分布情況為二分類變量,結(jié)果為“是”/“否”(分別記為“1”/“0”)兩項(xiàng),因此在SPSS軟件中計(jì)算Phi系數(shù),進(jìn)行相關(guān)性檢驗(yàn)。

主題內(nèi)容語(yǔ)義分析

本研究使用Python對(duì)評(píng)價(jià)文本進(jìn)行詞頻分析,通過(guò)詞云圖表達(dá)不同文本數(shù)據(jù)中被使用者提及頻次較高的詞語(yǔ)內(nèi)容,以獲取各公園的感知主題內(nèi)容。

技術(shù)路線

本研究基于北京市10座城市公園的大眾點(diǎn)評(píng)評(píng)價(jià)文本數(shù)據(jù),利用兩種模型分別從單個(gè)公園和公園整體使用感知兩個(gè)層面進(jìn)行文本分析,并對(duì)比分析感知主題的分類結(jié)果。

圖片

研究技術(shù)路線圖 ? 尚珍宇,程可欣,簡(jiǎn)鈺清,王志芳


03 研究結(jié)果與分析

詞典模型更適用于公園間橫向?qū)Ρ?/h4>

詞典模型分類統(tǒng)計(jì)結(jié)果顯示,游客對(duì)各公園不同主題的感知頻率存在明顯差異:圓明園遺址公園和奧林匹克森林公園的感知總頻率最高,北京世界公園與朝陽(yáng)公園的感知總頻率相對(duì)較低;奧林匹克森林公園不同主題間感知頻率差異最大。此外,在不同公園中,娛樂(lè)活動(dòng)和美學(xué)欣賞均表現(xiàn)出較高的游客感知頻率,教育價(jià)值和宗教信仰的感知頻率普遍較低。圓明園遺址公園在歷史文化方面的感知頻率、八大處公園在宗教信仰方面的感知頻率、景山公園的美學(xué)欣賞感知頻率、朝陽(yáng)公園的社會(huì)交往感知頻率明顯高于其他公園。除此之外,玉淵潭公園和八大處公園的教育價(jià)值感知關(guān)注度相較于其他公園有所不足。

圖片

詞典模型下各公園不同主題的感知頻率差異圖 ? 尚珍宇,程可欣,簡(jiǎn)鈺清,王志芳

LDA模型突出公園自身特色

由LDA模型下的感知分析結(jié)果可知,北京市10座城市公園的感知類型差異明顯,社交媒體評(píng)價(jià)突出體現(xiàn)了公園自身的景觀特色和游客感知偏好。通過(guò)表3可以看出,不同公園游客感知的主題數(shù)量普遍被分為8或9項(xiàng),其中圓明園遺址公園、玉淵潭公園和奧林匹克森林公園的感知主題較多,北京世界公園最少。在感知內(nèi)容上公園間存在差異,但部分主題在多數(shù)公園中均有體現(xiàn)。除此之外,部分感知主題因公園自身的特色表現(xiàn)出不同。同時(shí),節(jié)慶活動(dòng)在不同公園中也會(huì)產(chǎn)生獨(dú)特的游客感知。

微信圖片_20240313151450.png

圖片

玉淵潭公園主題詞云圖 ? 尚珍宇,程可欣,簡(jiǎn)鈺清,王志芳

圖片

香山公園主題詞云圖 ? 尚珍宇,程可欣,簡(jiǎn)鈺清,王志芳

將10座公園的所有評(píng)論文本數(shù)據(jù)進(jìn)行LDA模型分析,結(jié)果顯示,感知主題可劃分為10項(xiàng),其中交通門(mén)票、春季景觀、記憶感知和社交活動(dòng)的感知頻率高于其他主題,登山活動(dòng)、人文歷史、集會(huì)表演、秋季景觀、宗教文化、特色建筑的感知頻率相對(duì)較低。由此可見(jiàn),北京城市公園游客對(duì)公園的關(guān)注主要集中于社交活動(dòng)的需求、自然景觀帶來(lái)的視覺(jué)審美需求,以及交通設(shè)施狀況和城市公園消費(fèi)情況。

圖片

香山公園秋景 ? 徐焰

詞典模型與LDA模型分析的共性與差異

兩種模型下不同感知主題共性分析

綜合分析結(jié)果可以看出北京城市公園游客主要關(guān)注社交游憩需求和自然景觀帶來(lái)的視覺(jué)審美需求是否得到滿足,同時(shí)對(duì)交通設(shè)施狀況和城市公園消費(fèi)情況較為敏感。基于詞典模型的9項(xiàng)感知主題和LDA模型的10項(xiàng)感知主題在評(píng)價(jià)中的分布具有一定的相關(guān)性,主題分布相關(guān)性較強(qiáng)的有:春季景觀與環(huán)境改善、生物多樣性、娛樂(lè)活動(dòng)和美學(xué)欣賞;宗教文化與歷史文化、宗教信仰;登山活動(dòng)與宗教信仰;秋季景觀與美學(xué)欣賞;社交活動(dòng)與娛樂(lè)活動(dòng)、社會(huì)交往;記憶感知與教育價(jià)值;人文歷史與歷史文化、美學(xué)欣賞和教育價(jià)值。除此之外,詞典模型下的身心修復(fù)主題,以及LDA模型下的交通門(mén)票、特色建筑及集會(huì)表演主題與其他感知主題的分布相關(guān)性都較弱。

圖片

兩種模型下不同感知主題相關(guān)性?;鶊D ? 尚珍宇,程可欣,簡(jiǎn)鈺清,王志芳

兩種模型感知內(nèi)容分類的結(jié)果均表現(xiàn)出對(duì)自然景觀、人文歷史景觀和娛樂(lè)活動(dòng)的關(guān)注。此外,LDA模型的分類結(jié)果更側(cè)重于對(duì)不同自然景觀和游覽活動(dòng)的綜合感知;同時(shí),將娛樂(lè)活動(dòng)劃分為更具體的主題。相比于詞典模型清晰的感知主題劃分,LDA模型的分析結(jié)果界限相對(duì)模糊。

兩種模型下不同主題感知內(nèi)容差異分析

兩種模型下的游客感知主題類型在不同公園的表現(xiàn)存在明顯差異。在單個(gè)公園的分析中所獲取的感知主題類型存在明顯差異。LDA模型提煉出的感知主題在不同公園中體現(xiàn)的內(nèi)容各有不同,例如祭拜活動(dòng)和登山活動(dòng)等主題僅在個(gè)別公園中有所呈現(xiàn);幾乎未能呈現(xiàn)低頻感知的內(nèi)容;主題更加突出公園自身的特色,類型更加細(xì)分,且存在部分詞典模型未涉及的感知內(nèi)容。相比之下,詞典模型則能夠捕捉到所有設(shè)定的感知內(nèi)容。感知主題與涵蓋內(nèi)容受現(xiàn)有詞典的影響,分類分析結(jié)果更加注重游客對(duì)人工選定的不同景觀服務(wù)內(nèi)容的感知,識(shí)別到的對(duì)周邊環(huán)境和景觀要素的感知較少。

圖片

圓明園遺址公園 ? 徐焰


04  討論

兩種模型在公園感知文本分析中的優(yōu)缺點(diǎn)

通過(guò)對(duì)比分析可以看出,基于詞典模型和LDA模型的城市公園感知分析在主題類型劃分上具有顯著差異??蓮墓珗@感知類型劃分、感知內(nèi)容識(shí)別及模型適用范圍梳理兩種方法的具體優(yōu)缺點(diǎn)(表4)。

640 (3).png

兩種模型相結(jié)合的應(yīng)用建議

在模型優(yōu)化方面,可以基于LDA分析結(jié)果對(duì)詞典模型的詞典內(nèi)容進(jìn)行擴(kuò)充、完善。在模型專業(yè)適用性方面,可以結(jié)合兩者特點(diǎn)和優(yōu)勢(shì)來(lái)判斷結(jié)合應(yīng)用的途徑。進(jìn)行區(qū)域尺度的公園感知分析時(shí),可先利用詞典模型進(jìn)行現(xiàn)狀分析,為公園的建設(shè)、管理和改進(jìn)提供依據(jù);再選定需要深入挖掘的感知類型,通過(guò)LDA模型進(jìn)行具體的文本分析,細(xì)化公園感知內(nèi)容。對(duì)于單個(gè)公園進(jìn)行感知分析時(shí),可以基于LDA模型的結(jié)果確定公園的特色和游客的關(guān)注內(nèi)容,再據(jù)此優(yōu)化詞典模型并展開(kāi)進(jìn)一步分析,以期更加全面地發(fā)現(xiàn)問(wèn)題。


05  結(jié)語(yǔ)

本研究選擇了兩種最常用的文本主題分析模型——詞典模型與LDA模型,對(duì)相同的研究對(duì)象進(jìn)行分析,探討兩種模型的應(yīng)用在城市公園感知研究中的差異,以明確其優(yōu)缺點(diǎn)和優(yōu)化途徑。研究結(jié)果不僅對(duì)城市公園的建設(shè)和管理具有指導(dǎo)性價(jià)值,也有利于推進(jìn)通過(guò)文本分析進(jìn)行社會(huì)感知的相關(guān)研究發(fā)展。

本研究仍存在一定的局限性。在數(shù)據(jù)來(lái)源方面,來(lái)自大眾點(diǎn)評(píng)網(wǎng)站的評(píng)價(jià)文本缺乏使用者的個(gè)人信息,無(wú)法進(jìn)行有效的用戶畫(huà)像分析,分析結(jié)果難以全面體現(xiàn)城市公園游客感知情況。此外,LDA模型作為傳統(tǒng)的無(wú)監(jiān)督分類模型,無(wú)法把控分類結(jié)果。針對(duì)LDA模型問(wèn)題目前已有改進(jìn)的涉及半監(jiān)督和有監(jiān)督的機(jī)器學(xué)習(xí)主題分類模型,有待進(jìn)一步探究。最后,除了本文所探究的兩種模型外,基于大數(shù)據(jù)的文本分類模型還有多種,不同的模型算法具有各自的優(yōu)勢(shì)和不足,后續(xù)研究也需要結(jié)合更多模型進(jìn)行進(jìn)一步的深化和驗(yàn)證。


參考文獻(xiàn)

[1] Ferreira, A. P., Silva, T. H., & Loureiro, A. A. (2020). Uncovering spatiotemporal and semantic aspects of tourists mobility using social sensing. Computer Communications, (160), 240?252.
[2] Li, Y., Guo, J., & Chen, Y. (2022). A new approach for tourists’ visual behavior patterns and perception evaluation based on multi-source data. Journal of Geo-information Science, 24(10), 2004?2020.
[3] Liu, Y., Liu, X., Gao, S., Gong, L., Kang, C., Zhi, Y., Chi, G., & Shi, L. (2015). Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 105(3), 512?530.
[4] Liu, Y. (2016). Revisiting several basic geographical concepts: A social sensing perspective. Acta Geographica Sinica, 71(4), 564?575.
[5] Mao, T., Wu, Y., & Huang, W. (2023). Content mining and sentiment analysis of online comments for ethnic museums in autonomous regions. Economic Geography, 43(8), 229?236.
[6]  He, X. (2019). Research on Social Sensing and Spatiotemporal Pattern of Xiong’an New District Based on Weibo Data [Master’s thesis]. Hebei Normal University.
[7] Zhang, S., & Zhou, W. (2018). Recreational visits to urban parks and factors affecting park visits: Evidence from geotagged social media data. Landscape and Urban Planning, (180), 27?35.
[8] Donahue, M. L., Keeler, B. L., Wood, S. A., Fisher, D. M., Hamstead, Z. A., & McPhearson, T. (2018). Using social media to understand drivers of urban park visitation in the Twin Cities, MN. Landscape and Urban Planning, (175), 1?10.
[9] Li, F., Li, F., Li, S., & Long, Y. (2019). Deciphering the recreational use of urban parks: Experiments using multi-source big data for all Chinese cities. Science of the Total Environment, (701), 134896.
[10] Liang, H., & Zhang, Q. (2021). Temporal and spatial assessment of urban park visits from multiple social media data sets: A case study of Shanghai, China. Journal of Cleaner Production, (297), 126682.
[11] Van Berkel, D. B., Tabrizian, P., Dorning, M. A., Smart, L., Newcomb, D., Mehaffey, M., Neale, A., & Meentemeyer, R. K. (2018). Quantifying the visual-sensory landscape qualities that contribute to cultural ecosystem services using social media and LiDAR. Ecosystem services, (31), 326?335.
[12] Oteros-Rozas, E., Martín-López, B., Fagerholm, N., Bieling, C., & Plieninger, T. (2018). Using social media photos to explore the relation between cultural ecosystem services and landscape features across five European sites. Ecological Indicators, (94), 74?86.
[13] Richards, D. R., & Friess, D. A. (2015). A rapid indicator of cultural ecosystem service usage at a fine spatial scale: Content analysis of social media photographs. Ecological Indicators, (53), 187?195.
[14] Pan, Y., & Li, J. (2021). Landscape preference based on user-generated photograph metadata: The case of Xixi National Wetland Park. Natural Protected Areas, (1), 100?108.
[15] Zhu, X., Gao, M., Zhang, R., & Zhang, B. (2021). Quantifying emotional differences in urban green spaces extracted from photos on social networking sites: A study of 34 parks in three cities in northern China. Urban Forestry & Urban Greening, (62), 127133.
[16] Wartmann, F. M., Acheson, E., & Purves, R. S. (2018). Describing and comparing landscapes using tags, texts, and free lists: An interdisciplinary approach. International Journal of Geographical Information Science, 32(8), 1572?1592.
[17] Yan, Y., Chen, J., & Wang, Z. (2020). Mining public sentiments and perspectives from geotagged social media data for appraising the post-earthquake recovery of tourism destinations. Applied Geography, (123), 102306.
[18] Marcotte, C., & Stokowski, P. A. (2021). Place meanings and national parks: A rhetorical analysis of social media texts. Journal of Outdoor Recreation and Tourism, (35), 100383.
[19] Bai, H., Song, Z., Liang, S., Zhang, P., & Zhang, G. (2023). Imagery perception analysis and comprehensive attraction evaluation of tourism destinations based on Internet text data—Taking Nanjing City as example. Areal Research and Development, 42(4), 89–94.
[20] Zhao, Y., Pang, S., & Wu, Z. (2021). Research on geographic semantic ontology model based on social sensing data for emergency management of events. Information Science, (2), 44?53.
[21] Chen, Y., Gong, C., Fan, Y., Li, X., Liang, Y., & Hu, M. (2022). Spatio-temporal variation assessment of urban waterlogging in Zhengzhou using social media data. Journal of China Hydrology, 42(3), 26, 48?52.
[22] Li, S., Zhao, F., Zhou, Y., Tian, X., & Huang, H. (2022). Analysis of public opinion and disaster loss estimates from typhoons based on Microblog data. Journal of Tsinghua University (Science and Technology), 62(1), 43?51.
[23] Yang, B., & Zhang, J. (2017). Research on tourism image and perception of Tianmu Mountain based on network text analysis—Based on travel notes and comments of Ctrip. Journal of Fujian Forestry Science and Technology, 44(4), 118?125.
[24] Wang, X., & Xia, M. (2018). Research on tourist preference and satisfaction in Huangshan Scenic Spot based on network review data. Tourism Overview, (18), 59?60.
[25] Wight, A. C. (2020). Visitor perceptions of European Holocaust Heritage: A social media analysis. Tourism Management, (81), 104142.
[26] Xu, Z., Dong, J., Chen, Z., Fu, W., Wang, M., & Dong, J. (2021). Image Perception of the historical ancient town scenic spot of Yunshuiyao. Journal of Chinese Urban Forestry, 19(2), 115?120.
[27] Park, S. B., Kim, J., Lee, Y. K., & Ok, C. M. (2020). Visualizing theme park visitors’ emotions using social media analytics and geospatial analytics. Tourism Management, (80), 104127.
[28] Widmar, N. O., Bir, C., Clifford, M., & Slipchenko, N. (2020). Social media sentimentas an additional performance measure? Examples from iconic theme park destinations. Journal of Retailing and Consumer Services, (56), 102157.
[29] Wan, C., Shen, G. Q., & Choi, S. (2021). Eliciting users’ preferences and values in urban parks: Evidence from analyzing social media data from Hong Kong. Urban Forestry & Urban Greening, (62), 127172.
[30] Li, L., Zhang, C., Han, L., Qing, L., & Ji, H. (2021). Research on multi-scale evaluation system of parks based on comment text—Taking Chengdu parks as an example. Intelligent City, (2), 3?6.
[31] Jiang, Q., Wang, G., Liang, X., & Liu, N. (2022). Research on the perception of cultural ecosystem services in urban parks via analyses of online comment data. Landscape Architecture Frontiers, 10(5), 32?51.
[32] Jing, F., Sun, H., & Long, D. (2017). Tourist experience elements structure characteristics analysis of Xixi National Wetland Park based on web text. Journal of Zhejiang University (Science Edition), 44(5), 623?630.
[33] Wang, X., & Li, X. (2017). Research on the analysis of social services value of forest park in Beijing based on network big data. Chinese Landscape Architecture, (10), 14?18.
[34] Zhao, S., & Liu, B. (2019). Research on visitor perception of urban parks based on analysis of network text data—Take the main urban area of Nanjing as an example. 2019 Urban Development and Planning Proceedings (pp. 263?272). Chinese Society for Urban Studies.
[35] Gao, X., Jin, Y., Wang, X., & Hao, J. (2021). Research on product perceptual evaluation method based on online review mining. Modern Manufacturing Engineering, (12), 13?20.
[36] Lu, X. (2014). Research on text clustering algorithm based on K-means. Computer Programming Skills & Maintenance, (24), 33?35.
[37] Wang, D., Li, J., & Shi, Y. (2020). Methods of government document clustering based on K-means algorithm. Software Guide, 19(6), 201?204.
[38] Ma, W., Chen, G., Li, X., Su, W., Chai, Y., Pu, Y., Zeng, J., & Liu, X. (2021). Chinese comment classification based on Naive Bayesian algorithm. Journal of Computer Applications, 41(S2), 31?35.
[39] Permana, F. C., Rosmansyah, Y., & Abdullah, A. S. (2017). Naive Bayes as opinion classifier to evaluate students satisfaction based on student sentiment in Twitter social media. Journal of Physics: Conference Series, (893), 012051.
[40] Han, X., & Li, Y. (2022). Research on the influencing factors of social media rumor-refuting information dissemination effect in emergencies. Information Studies: Theory & Application, 45(8), 97?103.
[41] Zeng, Y., Li, Z., & Zhou, Y. (2020). Article feature extraction and flow control based on text mining. Electronic Technology & Software Engineering, (2), 176?177.
[42] Wang, Z., Miao, Y., Xu, M., Zhu, Z., Qureshi, S., & Chang, Q. (2021). Revealing the differences of urban parks’ services to human wellbeing based upon social media data. Urban Forestry & Urban Greening, (63), 127233.
[43] Wang, Z., Zhu, Z., Xu, M., & Qureshi, S. (2021). Fine-grained assessment of greenspace satisfaction at regional scale using content analysis of social media and machine learning. Science of the Total Environment, (776), 145908.
[44] Zheng, T., Yan, Y., Zhang, W., Zhu, J., Wang, C., Rong, Y., & Lu, H. (2022). Landscape assessment on urban parks using social media data. Acta Ecologica Sinica, 42(2), 561?568.
[45] Taecharungroj, V., & Mathayomchan, B. (2019). Analysing TripAdvisor reviews of tourist attractions in Phuket, Thailand. Tourism Management, (75), 550?568.
[46] Dong, S., & Wang, Q. (2019). LDA-based tourist perception dimension recognition: Research framework and empirical research—Taking the National Mine Park as an example. Journal of Beijing Union University (Humanities and Social Sciences), 17(2), 42?49.
[47] Liang, C., & Li, R. (2020). Tourism destination image perception analysis based on the Latent Dirichlet Allocation model and dominant semantic dimensions: A case of the Old Town of Lijiang. Progress in Geography, 39(4), 614?626.
[48] Song, Y., Wang, R., Fernandez, J., & Li, D. (2021). Investigating sense of place of the Las Vegas Strip using online reviews and machine learning approaches. Landscape and Urban Planning, (205), 103956.
[49] Zhou, W. (2021) Research on Tourism Destination Evaluation Based on Improved AHP of LDA: A Case Study of 5A Scenic Spots in Jiangxi Province [Master’s thesis]. Jiangxi University of Finance and Economics.
[50] Beijing Statistics Bureau. (2021). Beijing statistics yearbook. China Statistics Press.
[51] Zhu, Z. (2020). An Assessment Framework of Green Space Satisfaction Using Social Media Data: Content Analysis with Machine Learning [Master’s thesis]. Peking University.
[52] Wang, Z., Miao, Y., Zhu, Z., Zhou, J., & Wang, S. (2020). A method for landscape service identification of parks (No. CN111310444A). China National Intellectual Property Administration.
[53] Buchel, S., & Frantzeskaki, N. (2015). Citizens’ voice: A case study about perceived ecosystem services by urban park users in Rotterdam, the Netherlands. Ecosystem Services, (12), 169?177.
[54] Huang, S., Pearce, J., Wen, J., Dowling, R. K., & Smith, A. J. (2020). Segmenting Western Australian national park visitors by perceived benefits: A factor-item mixed approach. International Journal of Tourism Research, 22(6), 814?824.
[55] Willemen, L., Verburg, P. H., Hein, L., & van Mensvoort, M. E. (2008). Spatial characterization of landscape functions. Landscape and Urban Planning, 88(1), 34?43.
[56] Sun, R., Li, F., & Chen, L. (2019). A demand index for recreational ecosystem services associated with urban parks in Beijing, China. Journal of Environmental Management, (251), 109612.
[57] van Riper, C. J., Kyle, G. T., Sutton, S. G., Barnes, M., & Sherrouse, B. C. (2012). Mapping outdoor recreationists’ perceived social values for ecosystem services at Hinchinbrook Island National Park, Australia. Applied Geography, 35(1?2), 164?173.
[58] Wang, J., Wang, M., & Du, B. (2019). A study of the change trend of social concern in the field of consumption in China—The LDA Model analysis based on the text of Daily Economic News List in People’s Daily Online (2007—2017). Journal of Baoding University, 32(2), 41?49.
[59] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, (3), 993?1022.
[60] Brandt, T., Bendler, J., & Neumann, D. (2017). Social media analytics and value creation in urban smart tourism ecosystems. Information & Management, 54(6), 703?713.
[61] R?der, M., Both, A., & Hinneburg, A. (2015). Exploring the Space of Topic Coherence Measures. Proceedings of the Eighth ACM International Conference on Web Search and Data Mining (pp. 399?408). Association for Computing Machinery.
[62] Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. (2012). Exploring Topic Coherence over Many Models and Many Topics. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (pp. 952?961). Association for Computational Linguistics.
[63] Syed, S., & Weber, C. T. (2018). Using machine learning to uncover latent research topics in fishery models. Reviews in Fisheries Science & Aquaculture, 26(3), 319?336.
[64] Chen, Y., Zhu, Y., & Fu, G. (2022). Visitor perception toward outstanding universal value of Xinjiang Tianshan—Based on web text analysis. Special Zone Economy, 398(3), 124?128.
[65] Liu, Q., Wang, X., & Liu, J. (2022). Study on relationship among tourist perceived value, satisfaction and environmental responsibility behavior in forest park. Ecological Economy, 38(2), 137?141.
[66] Cao, K., & Chen, Y. (2021). Service evaluation of Shenzhen parks based on social data. Special Zone Economy, (4), 127?129.
[67] Ye, Y., & Qiu, H. (2022). Urban park image perception based on network text analysis. Journal of Chinese Urban Forestry, 20(1), 90?95.
[68] Han, D., Wang, C., & Xiao, M. (2018). Text categorization scheme based on semi-supervised learning and Latent Dirichlet allocation model. Computer Engineering and Design, 39(10), 3265?3271.
[69] Guo, X., Ding, J., Jiang, H., & Chen, Z. (2020). ZeroNet text content analysis based on semi-supervised LDA topic model. Information Technology, (3), 32?38.


本文引用格式 / PLEASE CITE THIS ARTICLE AS

Shang, Z., Cheng, K., Jian, Y., & Wang, Z. (2023). Comparison and applicability study of analysis methods for social media text data: Taking perception of urban parks in Beijing as an example.  Landscape Architecture Frontiers, 11(5), 8?29. https://doi.org/10.15302/J-LAF-1-020083



封面圖片 ? 陳燕華
編輯 | 王穎,周佳怡
翻譯 | 王穎,尚珍宇,周佳怡


版權(quán)聲明:本文版權(quán)歸原作者所有,請(qǐng)勿以景觀中國(guó)編輯版本轉(zhuǎn)載。如有侵犯您的權(quán)益請(qǐng)及時(shí)聯(lián)系,我們將第一時(shí)間刪除。

投稿郵箱:info@landscape.cn

項(xiàng)目咨詢:18510568018(微信同號(hào))

打賞
  • 給Ta打個(gè)賞

0

發(fā)表評(píng)論

您好,登錄后才可以評(píng)論哦!

熱門(mén)評(píng)論

相關(guān)文章